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Types of Deep Learning
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DeepTraffic: Deep Reinforcement Learning Competition

DeepTraffic

Main Page - | eaderboard - Abour DeepTraffic
Americans spend 8 billion hours stuck in traffic every year
Deep neural networks can help!

a
Tanessige = 3;
5 patchesAhead - -
O 7 patchesBenind 3
0 8 trainIteratlons - 120088;
1é // the number of other autonomous vehicles controlled by your network
D 11 othecAgents = 8; // max of 9
0 12
121 var naum_inputs - (lanssside * 2 + 1) * (patchesahead + patchesBehind);
\ D ﬁ Apply Code/Reset Net Save Code/Net 1o File Load Code/Net from File
5 -
Speed; g submit Model te Competition
72 on )
CarsPassed: | U i3 - = ——

oak 02k o2k cgk osk ok osk o8k osk <k

L

U U Value Function Approximating Neural Netwark:

LOAD CUSTOM IMAGE

o

Road Overlay: (oo

Neone v
REQUEST VISUALIZATION
Simulation Speed: =

Fast v vahicle s
[} ° [ ] [ ]
[ ]
https://selfdrivingcars.mit.edu/deeptraffic
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* Competition
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\ DeepTraffic: Driving Fast through Dense Traffic
with Deep Reinforcement Learning

\ Lex Fridman. Benedikt Jenik. and Jack Terwilliger

| Massachusetts Institute of Technology (MIT)

\ Abstract—We present 2 micro-traffic simulation (named  that world. Moreover. we take 3 broader look about the impact
‘( wpeepTraffic”) where the perception. control, and planning S¥* of that single intelligent agent o° {he macro-patterns of traffic

| % tems for one of the cars are all by e neural network  flow. and show a deep RL agent may in fact alleviate traffic
|\ = as part of -Aree, off-poTi reinforcement Searning ¥ S, 1ams not create them despite operating under 2 purely greedy
| = . primary goal of DeepTraffic is 1o make the hands-on cndyof " b ) y e
| =~ deeP reinforcement Jearning accessible 10 thousands of students, P© icy- o ) )
{ = educators. and researchers in order 10 inspire and fuel the The latest statistics on the number of submissions and the
\ o exploration and evaluation of DQN variants and hy perparameter extent of crow dsourced network training and simulation are as
\ e configurat through large-s¢ open com tion. This paper follows:
\ > jnvestigates the crowd-sourced h)ptrpﬂramdtr tuning of the ) ) _
\i N policy metwork thet resulted from the frst tteration of the Number of submISSIOnc 13417 .
_— DeepTraffic competition where thousands of participants actively « Students participating in competition: 7.120
\ Y searched through the h)ptrpammder space with the objective « Total network parameters opl'\mizcdz 168.5 million
III. mm  Massachusetts ". 7 ‘:f :’:";o“::ml petwork submission to make it onto the top-10 . Total duration of RL simulations: 06.6 years
II ':‘:f:g:::li:' A . “ o Deep reinforcement Jearning has shown promise 10 Jearn O
y h v successfully © erate 10 simulated hysics environments like
) y op . phy

o 3 MuloCo 6], in gaming environments 7. 1. and driving
1. INTRODU CTION : i 3 -

environments 8l 9. Yet. the question of how so much can be
. value learned from such sparse supervision is not yet well explored.-

° _ rvarard such understanding by drawing \:
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Philosophical Motivation for Reinforcement Learning

Takeaway from Supervised Learning:

Neural networks are great at memorization and not (yet) great at
reasoning.

Hope for Reinforcement Learning:

Brute-force propagation of outcomes to knowledge about states
and actions. This is a kind of brute-force “reasoning”.

III | tt t f setts For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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Agent and Environment

e At each step the agent:
* Executes action
* Receives observation (new state)
* Receives reward

* The environment:
* Receives action
* Emits observation (new state)
* Emits reward

Environment )4\
Reward \

Action

mmm  Massachusetts For the full updated list of references visit: [80] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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Examples of Reinforcement Learning

Reinforcement learning is a general-purpose framework for decision-making:

An agent operates in an environment: Atari Breakout
An agent has the capacity to act

Each action influences the agent’s future state
Success is measured by a reward signal

Goal is to select actions to maximize future reward

I II il- Massachusetts For the full updated list of references visit: [85] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January

Institute of . )
Technology https://selfdrivingcars.mit.edu/references
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Examples of Reinforcement Learning

Cart-Pole Balancing

* Goal — Balance the pole on top of a moving cart

» State —angle, angular speed, position, horizontal velocity
* Actions — horizontal force to the cart

* Reward — 1 at each time step if the pole is upright

I II u - m:;::::giens For the full updated list of references visit: [166] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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Examples of Reinforcement Learning

nmmw LI

Doom

* Goal —Eliminate all opponents

» State — Raw game pixels of the game
e Actions — Up, Down, Left, Right etc

* Reward — Positive when eliminating an opponent,
negative when the agent is eliminated

I II u - m:tsif:f:gfe“s For the full updated list of references visit: [166] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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Examples of Reinforcement Learning

Bin Packing

« Goal - Pick a device from a box and put it into a container

» State - Raw pixels of the real world

» Actions - Possible actions of the robot

« Reward - Positive when placing a device successfully, negative otherwise

I II B Massachusetts For the full updated list of references visit: [166] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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Markov Decision Process

S0,A0,7T1,8S1,41, 72 o, Sn—1,An—-1, T Sn

1 t 1
state Terminal state
action
reward
I . m:tsi‘;’:f:gfe“s For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fr.idman January
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Major Components of an RL Agent

An RL agent may include one or more of these components:
* Policy: agent’s behavior function
 Value function: how good is each state and/or action

* Model: agent’s representation of the environment

S0, A0, 7T1,S1,A1, 72, «oo, Sn=1,An—-1,T1, S
t t t
state Terminal state

action

reward

assachusetts For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman
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Robot in a Room

+1
upP
-1
80%
10%
START 10%

* reward +1 at [4,3], -1 at [4,2]

e reward -0.04 for each step

* what’s the strategy to achieve max reward?

 what if the actions were deterministic?

move UP
move LEFT
move RIGHT

actions: UP, DOWN, LEFT, RIGHT

setts
ltttf
Technology
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Is this a solution?

-

*

*

e only if actions deterministic

* solution/policy
* mapping from each state to an action

* not in this case (actions are stochastic)

?5=2

MIT 6.5094: Deep Learning for Self-Driving Cars
https://selfdrivingcars.mit.edu

Lex Fridman
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Optimal policy
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Reward for each step -2
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Reward for each step: -0.1
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Reward for each step: -0.04
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Reward for each step: -0.01
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Reward for each step: +0.01
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Value Function

e Future reward R=ri+rp+r3+ -+ 1,

Rt = 1% +T't_|_1 +T't_|_2 + -+ ™

e Discounted future reward (environment is stochastic)

Ry = re+yrepr +yereep + -+ vy
=1+ Y41 T VT eg2 + 7))
=7+ YRe41

* A good strategy for an agent would be to always choose
an action that maximizes the (discounted) future reward

- o Massachusetis MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
Institute of . )
I I I I I rZidnléuigy Refe rences: [84] https://selfdrivingcars.mit.edu lex.mit.edu 2018



Q-Learning

» State-action value function: Q%(s,a)

* Expected return when startingin s,
performing a, and following ©t

* Q-Learning: Use any policy to estimate Q that maximizes future reward:
* Qdirectly approximates Q* (Bellman optimality equation)
* Independent of the policy being followed
* Only requirement: keep updating each (s,a) pair

Qr11(st, at) = Qt(st, at)+a (Rt—I—l + 7 max Qe(se41, a) — Qe(st, at))

Old State Reward

:Ch:’;e“s MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
nology https://selfdrivingcars.mit.edu lex.mit.edu 2018
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Exploration vs Exploitation

Key ingredient of Reinforcement Learning

Deterministic/greedy policy won’t explore all actions

Don’t know anything about the environment at the beginning
Need to try all actions to find the optimal one

Maintain exploration

Use soft policies instead: nt(s,a)>0 (for all s,a)

e-greedy policy

With probability 1-e perform the optimal/greedy action
With probability € perform a random action

Will keep exploring the environment
Slowly move it towards greedy policy: € ->0

?5=2

MIT 6.5094: Deep Learning for Self-Driving Cars
https://selfdrivingcars.mit.edu

Lex Fridman
lex.mit.edu

January
2018



Q-Learning: Value lteration

Qtr1(st, at) = Qt(st, at)+a (Rt-l-l + Vmgx Qt(St+1.a) — Qe(st, at))

Old State
Al A2 A3 A4
S1 +1 +2 -1 0
S2 +2 0 +1
S3 -1 +1 0

Reward

initialize Q[num states,num actions] arbitrarily
observe initial state s
repeat

select and carry out an action a

observe reward r and new state s’

Q[s,al = Q[s,al] + al(r + y max,. Q[s',a'] - Q[s,al)

s = s’
until terminated

Hmm Massachusetts
I I Institute of
Technology

References: [84]

MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman
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Q-Learning: Representation Matters

* In practice, Value Iteration is impractical
* Very limited states/actions
e Cannot generalize to unobserved states

* Think about the Breakout game

 State: screen pixels

* Image size: 84 X 84 (resized)
. Consecutive 4 images 25684X84X4 g5 in the Q-table!

e Grayscale with 256 gray levels

Massachusetts MIT 6.5094: Deep Learning for Self-Driving Cars
Insti .
rzi |tl:)t|<‘e)o References' [83' 84] https://selfdrivingcars.mit.edu

Lex Fridman
lex.mit.edu

January
2018



Philosophical Motivation for Deep Reinforcement Learning

Takeaway from Supervised Learning:

Neural networks are great at memorization and not (yet) great at
reasoning.

Hope for Reinforcement Learning:

Brute-force propagation of outcomes to knowledge about states
and actions. This is a kind of brute-force “reasoning”.

Hope for Deep Learning + Reinforcement Learning:

General purpose artificial intelligence through efficient
generalizable learning of the optimal thing to do given a
formalized set of actions and states (possibly huge).

I II - ma;ﬁ::;'?eﬂs For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman Januar
II Technology https://selfdrivingcars.mit.edu/references https://selfdrivingcars.mit.edu lex.mit.edu 2018
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Deep Learning is Representation Learning

(aka Feature Learning)

Output
(object identity)

Deep
Learning

3rd hidden layer
(object parts)

Representation
Learning

2nd hidden layer
(corners and

contours)

Machine
Learning

Lst hidden layer

(edges)

Artificial
Intelligence

Visible layer
(input pixels)

Intelligence: Ability to accomplish complex goals.

Understanding: Ability to turn complex information to into simple, useful information.

I II - m:tsif:f:gfeus For the full updated list of references visit: [20] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
II Technology https://selfdrivingcars.mit.edu/references https://selfdrivingcars.mit.edu lex.mit.edu 2018
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Deep Q-Learning

Use a function (with parameters)

_ . $—  Function [ Qsa)
to approximate the Q-function o —» ApProXimator|, targets o errors
* Linear

* Non-linear: Q-Network

Q(s,a;0) = Q*(s,a)

Q-value 1
S State
Network ﬂ » S | State » Network | Q-value 2
a Action
Q-value 3
I I I - m:;::f:gfeﬁs For the full updated list of references visit: [83] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
II Technology https://selfdrivingcars.mit.edu/references https://selfdrivingcars.mit.edu lex.mit.edu 2018
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Deep Q-Network (DQN): Atari

Convolution Convolution Fully connected Fully connected
> v b:. i v
| }ir\‘omaui‘}
| -8 /
“ K -] / b | ® L
‘,‘D D 2 \\g I:I ° ° o |
[/ &= // . ° e |\
/] SV NN 3\
| /é F : : : ? ‘(“““‘\
o @B Q! ! ®:
\Tg . . ) ) m
I\ = ¥ /4 v/
7 \n v/ 3 !

Layer Input Filter size | Stride Num filters | Activation | Output
conv1 84x84x4 8x8 4 32 RelLU 20x20x32
conv2 20x20x32 | 4x4 2 64 RelLU Ox9x64
conv3 9x9x64 3x3 1 64 RelLU 7X7x64
fca 7x7x64 512 RelLU 512

fc5 512 18 Linear 18

Mnih et al. "Playing atari with deep reinforcement learning." 2013.

I II u - m:tsif:f:gfe“s For the full updated list of references visit: [83] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
II Technology https://selfdrivingcars.mit.edu/references https://selfdrivingcars.mit.edu lex.mit.edu 2018
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Deep Q-Network Training

* Bellman Equation:

Q(s,a) =r+ymax,Q(s’,a")

* Loss function (squared error):

L = E[(r + ymax,Q(s",a’) — Q(s,a))”]

N

target

I II u - m:;::::giens For the full updated list of references visit: [83] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman ~ January
II Technology ~ https ://selfdrivingcars .mit.edu/references https://selfdrivingcars.mit.edu lex.mit.edu 2018
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Q-value

Network

N

State Action

DQN Training

Given a transition < s, g, r, s’ >, the Q-table update rule in the
previous algorithm must be replaced with the following:

* Do a feedforward pass for the current state s to get
predicted Q-values for all actions

* Do a feedforward pass for the next state s” and calculate
maximum overall network outputs max ,.Q(s’, a’)

 Set Q-value target for action to r + ymax . Q(s’, a’) (use
the max calculated in step 2).
* Forall other actions, set the Q-value target to the same as originally
returned from step 1, making the error O for those outputs.

* Update the weights using backpropagation.

I II B Massachusetts For the full updated list of references visit: [83] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January

I I Institute of

Technology https://selfdrivingcars.mit.edu/references

https://selfdrivingcars.mit.edu lex.mit.edu 2018
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DQN Tricks

e Experience Replay
» Stores experiences (actions, state transitions, and rewards) and creates
mini-batches from them for the training process
* Fixed Target Network
* Error calculation includes the target function depends on network
parameters and thus changes quickly. Updating it only every 1,000
steps increases stability of training process.
Q(sha) — Q(Staa) + « Tt4+1 . 7Inl?’x Q(3t+lap) = Q(sh a')
* Reward Clipping
* To standardize rewards across games by setting all positive rewards to
+1 and all negative to -1.
([

Skipping Frames

» Skip every 4 frames to take action

I II B Massachusetts For the full updated list of references visit: [83 167] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
II https://selfdrivingcars.mit.edu/references ’ https://selfdrivingcars.mit.edu lex.mit.edu 2018

nstitute of
‘echnology

-f



https://selfdrivingcars.mit.edu/references

DQN Tricks

* Experience Replay
» Stores experiences (actions, state transitions, and rewards) and creates
mini-batches from them for the training process
* Fixed Target Network

* Error calculation includes the target function depends on network
parameters and thus changes quickly. Updating it only every 1,000
steps increases stability of training process.

Q(stva)  ans Q(sta a) + a Tt+1 . ’7m1;ax Q(st+1 ’P) = Q(sts (1,)

target Q function in the red rectangular is fixed

Replay x X
Target X X
Breakout 316.8 240.7 10.2 3.2
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest 2894 .4 822.6 1003.0 275.8
Space Invaders 1088.9 826.3 373.2 302.0
T s o s [83,167] e pecp Lo forselforivng Crs Lo
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Deep Q-Learning Algorithm

initialize replay memory D
initialize action-value function Q with random weights
observe initial state s
repeat
select an action a
with probability ¢ select a random action
otherwise select a = argmax,-Q(s,a’)
carry out action a
observe reward r and new state s’
store experience <s, a, r, s’> in replay memory D

sample random transitions <ss, aa, rr, ss’> from replay memory D
calculate target for each minibatch transition

if ss’ is terminal state then tt = rr

otherwise tt = rr + ymax,.Q(ss’, aa’)
train the Q network using (tt - Q(ss, aa))’ as loss

s = s'
until terminated

I II' — m:zf:f:gfeﬁs For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
II Technology https://selfdrivingcars.mit.edu/references https://selfdrivingcars.mit.edu lex.mit.edu 2018
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Atari Breakout

ima.. — B ima... — B ima.. -

E:T:-T- T
I

After After After
10 Minutes 120 Minutes 240 Minutes

of Training of Training of Training
I I I el m:ﬁf:f:;'?e“s MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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Dia. 3

.I

Game of Go

Dia. 4 Dia. 5 Dia. 6 Dia. 7
liberties atari capture result
Game size Board size N 3N Percent legal  legal game positions (A094777)["]
1%1 1 3 33% 1
2x2 4 81 70% 57
3x3 9 19,683 64% 12,675
4x4 16 | 43,046,721 56% 24,318,165
5x5 25 | 8.47x10" 49% 4.1x10"
9x9 81| 4.4x10%8 23.4% 1.039%x1038
13x13 169 |  4.3x1080 8.66% 3.72497923x1079
19x19 361 | 1.74x10"72 1.196% 2.08168199382x10170
I B et [170] Nkt o il
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AlphaGo (2016) Beat Top Human at Go

Human expert Supervised Learning Reinforcement Learning Self-play data Value network

positions policy network policy network

; N ‘Self Play : : y ‘Self Play :

Computer Programs Calibration Human Players

DeepMind challenge match " P Lee Sedol (9p)

AlphaGo (Mar 2016) T i A ’N Top player of
2 | Ppastdecade
s
»L Beats
Nature match Fan Hui (2p)
AlphaGo (Oct 2015) 3-times reigning
50 Euro Champion
KGS
Crazy Stone and Zen ﬁmateur
umans
I II am m::;:::ehl‘ljeﬂs For the full updated list of references visit: [83] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
II Technology https://selfdrivingcars.mit.edu/references https://selfdrivingcars.mit.edu lex.mit.edu 2018
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AlphaGo Zero (2017): Beats AlphaGo

5000

4000 -
3000
2000 -

1000 -

Elo Rating

-1000 -

-2000 -

L} 1 1 I T 1

0 5 10 15 20 25 30 35 40

—
-
—

=== AlphaGo Zero 40 blocks  eee=e AlphaGo Lee esee AlphaGo Master

I II B Massachusetts For the full updated list of references visit: [149] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January

Institute of .
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AlphaGo Zero Approach

 Same as the best before: Monte Carlo Tree Search (MCTS)

* Balance exploitation/exploration (going deep on promising positions or
exploring new underplayed positions)

* Use a neural network as “intuition” for which positions to
expand as part of MCTS (same as AlphaGo)

a Selection b  Expansion c Evaluation d Backup
T T e H#
maN, Q+u(P) | T ‘ S
3 ! Il ,l"—_—_ Il i \ l 1 !
;?? M l?’ iﬁ hd M T
1 ‘T . D1 1 / ‘
Q +u(P) -/nax : . v & —_— e
Po\ T
P P I 1
7/ N\ o~ :
4 3 I
(33) (338 258338
III' - m:ﬁa::giens For the full updated list of references visit: [170] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman Januar y
II Techln‘:ﬂogy https://selfdrivingcars.mit.edu/references https://selfdrivingcars.mit.edu lex.mit.edu 2018
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AlphaGo Zero Approach

 Same as the best before: Monte Carlo Tree Search (MCTS)

* Balance exploitation/exploration (going deep on promising positions or
exploring new underplayed positions)

* Use a neural network as “intuition” for which positions to
expand as part of MCTS (same as AlphaGo)

* “Tricks”

e Use MCTS intelligent look-ahead (instead of human games) to improve
value estimates of play options

e Multi-task learning: “two-headed” network that outputs (1) move
probability and (2) probability of winning.

* Updated architecture: use residual networks

III | ttt f setts For the full updated list of refer [170] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
II Technology https://selfdrivingcars.mit.edu https://selfdrivingcars.mit.edu lex.mit.edu 2018
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Americans spend 8 billion hours stuck in traffic every year.

T Y
v

r/""'

H

"Q

S Vhe B0 )
"“’.'-‘ B Ty P | |;~|__a| STy SR
f

I I I BB Massachusetts MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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Autonomous Driving: A Hierarchical View

User specifiied

Road network data
%

destination i

Route Planning

Jlk J

"‘!I Vi
= 4
‘llr* ) 2 oo

1
Sequence of waypoints through road network

¥

Perceived agents,

obstacles, and

signage
—

Behavioral Layer

Motion S 'Dcciﬁcation

Paden B, Cdp M, Yong SZ, Yershov D, Frazzoli E. "A Survey of Motion Planning and Control Techniques for Self-

Estimated pose and
collision free space

Motion Planning

Estimate of vehicle
state
é

Reference path or trajectory

Local Feedback
Control

Steering, throttle and brake commands

\

driving Urban Vehicles." IEEE Transactions on Intelligent Vehicles 1.1 (2016): 33-55.

I Hmm Massachusetts
I I Institute of
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Applying Deep Reinforcement Learning
to Micro-Traffic Simulation

Time=2702 4 scale=2 1

Disturb Traffic

0 km/h

20 km/h
40 km/h
60 km/h
80 km/h
100 km/

B Massachuselts . . . MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
I I I I I ':':f:th.::;ig; Refe rence: http ://WWW.trafﬂC'Sl mu Iatlon -de https://selfdrivingcars.mit.edu lex.mit.edu 2018
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DeepTraffic: Deep Reinforcement Learning Competition

DeepTraffic

Main Page - | eaderboard - Abour DeepTraffic

Americans spend 8 billion hours stuck in traffic every year
A Deep neural networks can help!

t head -
O 7 patchesBenin 18;
0 & trainIteratl

16 // the number of other auton
D 11 otheeAgents = 8; // mex of 9

O 12

121 var naum_inputs - (lanssside * 2 + 1) * (patchesahead + patchesBehind);

Apply Code/Reset Net Save Code/Net to File Load Code/Net from File

Submit Model te Competition

[ )
(. )
o

gl

it
ok ouk o2k osk cgk osk ofk ork o8k ogk %k

L
Fi on A; ima U

u valu
inp fe(s0) ref
| 1] 1111 1]
1] EEEE 1]
1] RS u
LOAD CUSTOM IMAGE == = = ==
] ) aEEE 1]
1] EEEE ui
Road Overl ree is sEEs i
ad Overlay:
4 1] ENEE ]
= HH EEEE ui
iz = mnEn u

REQUEST VISUALIZATION
Simulation Speed: =

Fast

https://selfdrivingcars.mit.edu/deeptraffic

* Goal: Achieve the highest average speed over a long period of time.
* Requirement for Students: Follow tutorial to achieve a speed of 65mph

I II il- m:tsif:f:gfe“s For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman

Technology https://selfdrivingcars.mit.edu/references https://selfdrivingcars.mit.edu lex.mit.edu
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What You Should Do

* To compete:

Read the tutorial: https://selfdrivingcars.mit.edu/deeptraffic-about

Change parameters in the code box.

Click "Apply Code" white button. Apply Code/Reset Net

Click "Run Training" blue button.

Click "Submit Model to Competition".  submit Model to competition

* And to visualize your submission for sharing with others:

* Customize your image vehicle. Load Custom Image
e Customize your color scheme. Red v

* Click "Request Visualization". Request Visualization

I II = m— m:;::::g?ens For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars
II Technology https://selfdrivingcars.mit.edu/references https://selfdrivingcars.mit.edu

Lex Fridman
lex.mit.edu
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The Road, The Car, The Speed
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80 mph O
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The Road, The Car, The Speed

Speed:

47 mph

Cars Passed:

D
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State Representation:

| W T
) [ [ I I .
T e e e e e .
[ ' .
fgd___ 111 1 1| |
R=s ! I I ! ! |
- O T S P

1 1 1 e I
(D o [ B |
N
|

I -

1 1 1 B

N -
- | | .
(===} = I .
I | |
I
— 1 1 T 1 U [

Hmm Massachusetts

Institute of
Technology

For the full updated list of references visit:
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Simulation Speed

s

fon

B o=
Road Overlay:

None s

Simulation Speed:

Normal %

n
Road Overlay:

None v

Simulation Speed:

Fast %

N Massachusetts
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Technology
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“Safety System”: Motion and Control are Given
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Safety System
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Learning the “Behavioral Layer” Task

Q-value 1 Q-value 2 Q-value n

'\T/'

Network

State

I I I 1m miﬁfﬂfgﬂ““s MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman Januar
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Learning the “Behavioral Layer” Task

Deep Traffic

G = cars.mit.edu/deeptraffic
_ D O
D‘ & e
T = = Value Function Approximating Neural Network:
W N - input(140) fc(50) relu(50) fc(5)
Spoad = = TErIEEEOE 0N H OEE H ENE i
e = = = TEECFTETEEE AEEE S EER il
80 , ! DEERNEEEER W HE = IEER "
mph —_ OrEET @ S EEE H EO H E= o
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Cars Passed g B EETET . H EBE - HEBE
= = = EE  E EEE = Rl | . HE
2445 - ENEEEEEEE EE EEE JEER
+ 8 TEET T T EEET HE B CHER
g =& EEEEDEEEEN BEEE 1]
jEpsy § Bupey Reaay | | =g oy -} CETH
EErEIrmEED. HE = - EEn
nfly
III'- m:;::::gie‘ts MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
II Technology https://selfdrivingcars.mit.edu lex.mit.edu 2018



Action Space

L

)
)

var noAction = 0;

- var accelerateAction
l var decelerateAction = 2
var goLeftAction = 3;
var goRightAction = 4;

L. B
I
l
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-
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"
Road Overlay:

Learning Input §
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Driving / Learning

learn = function (state, lastReward) {

brain.backward(lastReward):

var action = brain.forward(state):

return action;

Hmm Massachusetts

MIT 6.5094: Deep Learning for Self-Driving Cars
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Learning Input

- g I -
e - = g
1 N
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™ e — —— .
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™ ' . ' lEg ™
oA == 0
- ==
™ -~ ==
- 2.0 =0
A a a =
lanesSide = 1; lanesSide = 2; lanesSide = 1;
patchesAhead = 10; patchesAhead = 10; patchesAhead = 10;

patchesBehind = 0; patchesBehind = 0; patchesBehind = 10;
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Multiple Agents

// the number of other autonomous vehicles controlled by your network
otherAgents = 0; // max of 9

g a
n 2 i L 0
. 0 « 0 g : §. .0
A "BRR K- C u
u] ae
0 g @ " 5
8 ; ]
|- u/ - 5 3
] | o 3 g
0 -0 g 2 s g al
~ -0 n] 5|
0 c 84 8 5 -
k: o 0 : i
e 2 ~ P 3 5 %8
ul g i a0 g =
2 i i
§0 o 1 4L 1 g o
0 — . @ 3 |
1%;
R 3 3
0ee A - 0 : o 8
1 2 4 6 8 10
Wi ™ MIT 65094: Deep Learning for Seff-Dring Cars - ex FrdmanJanuary



Deep RL: Q-Function Learning Parameters

Value Function Approximating Neural Network:

input(135) fc(10) relu(10)fc(5) regression(5)
CHOEDAECDE SO o | E i
CEOCDE Oomorm = & & =
B & & &
i | [ i
o | = =
3] |
i |
il [
= [
= |

var num_inputs = (lanesSide x 2 + 1) * (patchesAhead + patchesBehind);
var num_actions = 5;

var temporal_window = 3;

var network_size = num_inputs *x temporal_window + num_actions x
temporal_window + num_inputs;

I I I el m:;f:f:g?e“s MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
II Technology https://selfdrivingcars.mit.edu lex.mit.edu 2018



Deep RL: Layers

layer_defs.push({
type: "fc',
num_neurons: 10,
activation: 'relu’

r);

fc(10) relu(10)

I el :“aﬁaf:z?e“s MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman Januar
II echne https://selfdrivingcars.mit.edu lex.mit.edu 2018



Deep RL: Output (Actions)

Q-value 1 Q-value 2 Q-value n

W

Network

1

State

layer_defs.push({ fc(5) regression(5)
type: 'regression’',
num_neurons: num_actions

31
’
I el m:ts;:;::g?eus MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
I I Technology https://selfdrivingcars.mit.edu lex.mit.edu 2018



ConvNetJS: Options

var opt = {};
opt.temporal_window = temporal_window;
opt.experience_size = 3000;
opt.start_learn_threshold = 500;
opt.gamma = 0.7;
opt.learning_steps_total = 10000;
opt.learning_steps_burnin = 1000;
opt.epsilon_min = 0.0;
opt.epsilon_test_time = 0.0;
opt.layer_defs = layer_defs;
opt.tdtrainer_options = {
learning_rate: 0.001, momentum: 0.0, batch_size: 64, 12_decay: 0.01
};

brain = new deepqlearn.Brain(num_inputs, num_actions, opt);

I B Massachusetts MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
I I Institute of

Technology https://selfdrivingcars.mit.edu lex.mit.edu 2018



Coding/Changing the Net Layout

2 //<![CDATA(
// a few things don't have var in front of them - they update already
existing variables the game needs

w

4 lanesSide = 1;

5 patchesAhead = 10;

6 patchesBehind = 10;

7 trainIterations = 100000;

8

9 // begin from convnetjs example

10 var num_inputs = (lanesSide * 2 + 1) = (patchesAhead + patchesBehind);
11 var num_actions = 5;

12 var temporal_window = 3; //1 // amount of temporal memory. © = agent lives
in-the-moment :)
13 var network_size = num_inputs * temporal_window + num_actions *

Apply Code/Reset Net

Watch out: kills trained state!

I II' — m:ts;:f:gfeﬁs For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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Training

* Done on separate thread (Web Workers) —

» Separate simulation, resets, state, etc.
* A lot faster (1000 fps +)

* Network state gets shipped to the main
simulation from time to time

* You get to see the improvements/learning live

LASSOHEENN
SRS RS

eoé
5°8

ok 08k 16k 24k 32k 4k 48k 56k 64k 7.2k 8k

trainIterations = 100000;
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Training

trainlIterations = 100000;

Run Training

LN ]
I n - m:z:::::z?eus For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
I I Technology https://selfdrivingcars.mit.edu/references https://selfdrivingcars.mit.edu lex.mit.edu 2018



https://selfdrivingcars.mit.edu/references

Local Evaluation
(Doesn’t Count)

Evaluation

* Scoring: Average Speed Average speed: 51 mph

e Method:
* Collect average speed
* Ten runs, about 45 (simulated) minutes of game each
e Result: median speed of the 500 runs

* Done server side after you submit

You can try it locally to get an estimate

* Uses exactly the same evaluation procedure/code
* DeepTraffic 2.0: Significantly reduced the influence of

I II == m:;f:::g?ens For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
II Technology https://selfdrivingcars.mit.edu/references https://selfdrivingcars.mit.edu lex.mit.edu 2018
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Loading/Saving

Save Code/Net to File

e Danger: Overwrites all of your code and the trained net

Load Code/Net from File

I II - m:tsif:f:gfeus For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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Submitting Your Network

Submit Model to Competition

* Submits your code and the trained net state
* Make sure you ran training!

* Adds your code to the end of a queue
* Gets evaluated some time soon (no promises when)

* You can resubmit as often as you like

 If your code wasn’t evaluated yet it we still remove it from the queue
(and move you to the end)

* The highest score counts.

assachusetts For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman
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Customization and Visualization

Load Custom Image
Red L

Request Visualization

Vehicle Skins

I II - m:;f:f:gfe“s For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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What You Should Do

* To compete:

Read the tutorial: https://selfdrivingcars.mit.edu/deeptraffic-about

Change parameters in the code box.

Click "Apply Code" white button. Apply Code/Reset Net

Click "Run Training" blue button.

Click "Submit Model to Competition".  submit Model to competition

* And to visualize your submission for sharing with others:

* Customize your image vehicle. Load Custom Image
e Customize your color scheme. Red v

* Click "Request Visualization". Request Visualization
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* Competition
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\ DeepTraffic: Driving Fast through Dense Traffic
with Deep Reinforcement Learning

\ Lex Fridman. Benedikt Jenik. and Jack Terwilliger

| Massachusetts Institute of Technology (MIT)

\ Abstract—We present 2 micro-traffic simulation (named  that world. Moreover. we take 3 broader look about the impact
‘( wpeepTraffic”) where the perception. control, and planning S¥* of that single intelligent agent o° {he macro-patterns of traffic

| % tems for one of the cars are all by e neural network  flow. and show a deep RL agent may in fact alleviate traffic
|\ = as part of -Aree, off-poTi reinforcement Searning ¥ S, 1ams not create them despite operating under 2 purely greedy
| = . primary goal of DeepTraffic is 1o make the hands-on cndyof " b ) y e
| =~ deeP reinforcement Jearning accessible 10 thousands of students, P© icy- o ) )
{ = educators. and researchers in order 10 inspire and fuel the The latest statistics on the number of submissions and the
\ o exploration and evaluation of DQN variants and hy perparameter extent of crow dsourced network training and simulation are as
\ e configurat through large-s¢ open com tion. This paper follows:
\ > jnvestigates the crowd-sourced h)ptrpﬂramdtr tuning of the ) ) _
\i N policy metwork thet resulted from the frst tteration of the Number of submISSIOnc 13417 .
_— DeepTraffic competition where thousands of participants actively « Students participating in competition: 7.120
\ Y searched through the h)ptrpammder space with the objective « Total network parameters opl'\mizcdz 168.5 million
III. mm  Massachusetts ". 7 ‘:f :’:";o“::ml petwork submission to make it onto the top-10 . Total duration of RL simulations: 06.6 years
II ':‘:f:g:::li:' A . “ o Deep reinforcement Jearning has shown promise 10 Jearn O
y h v successfully © erate 10 simulated hysics environments like
) y op . phy

o 3 MuloCo 6], in gaming environments 7. 1. and driving
1. INTRODU CTION : i 3 -

environments 8l 9. Yet. the question of how so much can be
. value learned from such sparse supervision is not yet well explored.-

° _ rvarard such understanding by drawing \:
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Human-in-the-Loop Reinforcement Learning:

Driving Ready?

Human expert Supervised Learning Reinforcement Learning Self-play data Value network

positions policy network policy network

' ‘Self Play : » ' ‘s@;n Play L’

Computer Programs Calibration Human Players

'

DeepMind challenge match P Lee Sedol (9p)

AlphaGo (Mar 2016) > (¥ Top player of
4-1 ; N past decade

I \

’ ~ o,

»L Beats

Nature match Fan Hui (2p)
AlphaGo (Oct 2015) 3-times reigning
50 Euro Champion
KGS
Crazy Stone and Zen ﬁmateur
umans
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To date, for most successful robots operating in the real world:
Deep RL is not involved

(to the best of our knowledge)

RO TICE
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To date, for most successful robots operating in the real world:
Deep RL is not involved

(to the best of our knowledge)

WAYMO 02
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Unexpected Local Pockets of High Reward

3
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.

¢

gifs.com
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Al Safety

Risk (and thus Human Life) Part of the Loss Function

e Artificial
=~ General
. INtelligence

Singularity

Deep Learning

Robotics

Computational Cognitive Science
Deep Reinforcement Learning
Emotion Creation

Cognitive Modeling

Artificial General Intelligence

We will explore more about bias, safety, and ethics in:
MIT 6.5099 Artificial General Intelligence
https://agi.mit.edu
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Thank You

Next lecture: Computer Vision
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